细粒度的视觉分类(FGVC)是计算机视觉和模式识别的一个长期存在的基本问题,并为各种各样的现实应用程序提供了基础。本文描述了我们在Snakeclef2022上使用FGVC的贡献。首先,我们设计了一个强大的多模式主链,以利用各种元信息来协助细粒度的识别。其次,我们提供了新的损失功能,可以用数据集解决长时间的分布。然后,为了充分利用未标记的数据集,我们使用自我监督的学习和监督学习联合培训来提供预训练的模型。此外,我们的实验也考虑了一些有效的数据过程技巧。最后但并非最不重要的一点是,在下游任务中进行了微调,并具有艰苦的型号模型性能。广泛的实验表明,我们的方法可以有效地提高细粒识别的性能。我们的方法分别可以在私人和公共数据集上获得宏F1分别为92.7%和89.4%,这是私人排行榜上参与者中的第一名。
translated by 谷歌翻译
Recent studies have demonstrated that smart grids are vulnerable to stealthy false data injection attacks (SFDIAs), as SFDIAs can bypass residual-based bad data detection mechanisms. The SFDIA detection has become one of the focuses of smart grid research. Methods based on deep learning technology have shown promising accuracy in the detection of SFDIAs. However, most existing methods rely on the temporal structure of a sequence of measurements but do not take account of the spatial structure between buses and transmission lines. To address this issue, we propose a spatiotemporal deep network, PowerFDNet, for the SFDIA detection in AC-model power grids. The PowerFDNet consists of two sub-architectures: spatial architecture (SA) and temporal architecture (TA). The SA is aimed at extracting representations of bus/line measurements and modeling the spatial structure based on their representations. The TA is aimed at modeling the temporal structure of a sequence of measurements. Therefore, the proposed PowerFDNet can effectively model the spatiotemporal structure of measurements. Case studies on the detection of SFDIAs on the benchmark smart grids show that the PowerFDNet achieved significant improvement compared with the state-of-the-art SFDIA detection methods. In addition, an IoT-oriented lightweight prototype of size 52 MB is implemented and tested for mobile devices, which demonstrates the potential applications on mobile devices. The trained model will be available at \textit{https://github.com/HubYZ/PowerFDNet}.
translated by 谷歌翻译
潜在的指纹对于识别犯罪嫌疑人很重要。但是,认识到参考指纹集中的潜在指纹仍然是一个挑战。现有方法的大多数(如果不是全部)将独立提取每个指纹的表示特征,然后比较这些表示特征在不同过程中识别的相似性。如果没有对特征提取过程的相似性的监督,则很难在最佳地反映两种指纹的相似性,这是匹配决策的基础。在本文中,我们提出了一种新方案,可以将两个指纹的配对关系建模为识别的相似性功能。配对关系是由混合深网建模的,该网络可以处理随机大小的困难和潜在指纹的损坏区域。两个数据库的实验结果表明,所提出的方法的表现优于最新技术。
translated by 谷歌翻译
潜在的指纹增强是潜在指纹识别的必要预处理步骤。大多数潜在的指纹增强方法试图恢复损坏的灰色山脊/山谷。在本文中,我们提出了一种新方法,该方法将潜在的指纹增强增强为生成对抗网络(GAN)框架中的指纹生成问题。我们将提议的网络命名为Fingergan。它可以在与相应的地面真相实例上强制执行其生成的指纹(即增强的潜在指纹),该实例无法与相应的地面真相实例相互区分。由于细节是指纹识别的主要特征,并且可以直接从指纹骨架图中检索细节,因此我们提供了一个整体框架,可以在直接优化细节信息的情况下执行潜在的指纹增强。这将有助于显着提高潜在的指纹识别性能。两个公共潜在指纹数据库的实验结果表明,我们的方法的表现大大优于艺术状态。这些代码可从\ url {https://github.com/hubyz/latentenhancement}提供非商业目的。
translated by 谷歌翻译
电子商务在通过互联网增强商人的能力方面已经大有帮助。为了有效地存储商品并正确安排营销资源,对他们来说,进行准确的总商品价值(GMV)预测非常重要。但是,通过数字化数据的缺乏进行准确的预测是不算平的。在本文中,我们提出了一个解决方案,以更好地预测Apay应用程序内的GMV。得益于Graph Neural网络(GNN),它具有很好的关联不同实体以丰富信息的能力,我们提出了Gaia,Gaia是一个图形神经网络(GNN)模型,具有时间移动意识注意。Gaia利用相关的电子销售商的销售信息,并根据时间依赖性学习邻居相关性。通过测试Apleay的真实数据集并与其他基线进行比较,Gaia表现出最佳性能。盖亚(Gaia)部署在模拟的在线环境中,与基线相比,这也取得了很大的进步。
translated by 谷歌翻译
最近,深度学习方法在交通预测方面取得了长足的进步,但它们的性能取决于大量的历史数据。实际上,我们可能会面临数据稀缺问题。在这种情况下,深度学习模型无法获得令人满意的性能。转移学习是解决数据稀缺问题的一种有前途的方法。但是,流量预测中现有的转移学习方法主要基于常规网格数据,这不适用于流量网络中固有的图形数据。此外,现有的基于图的模型只能在道路网络中捕获共享的流量模式,以及如何学习节点特定模式也是一个挑战。在本文中,我们提出了一种新颖的传输学习方法来解决流量预测,几乎可以将知识从数据富的源域转移到数据范围的目标域。首先,提出了一个空间图形神经网络,该网络可以捕获不同道路网络的节点特异性时空交通模式。然后,为了提高转移的鲁棒性,我们设计了一种基于模式的转移策略,我们利用基于聚类的机制来提炼源域中的常见时空模式,并使用这些知识进一步提高了预测性能目标域。现实世界数据集的实验验证了我们方法的有效性。
translated by 谷歌翻译
对于学习图表表示,并非图中的所有详细结构都与给定的图形任务相关。与任务相关的结构可以是$本地化的$或$稀疏$,仅参与子图或以子图的交互作用(层次结构的角度)。图神经网络应该能够有效提取与任务相关的结构并与无关的部分不变,这对于通用消息传递GNN来说是具有挑战性的。在这项工作中,我们建议从原始图的一系列子图中学习图表表示,以更好地捕获与任务相关的子结构或分层结构,并跳过$ noisy $零件。为此,我们设计了软遮罩GNN层,以通过掩模机制提取所需的子图。软遮罩是在连续空间中定义的,以维持不同部分的重量并表征不同部分的权重。与现有的子图或分层表示方法和图形合并操作相比,软掩模GNN层不受固定样品或降低比率的限制,因此更灵活地提取具有任意尺寸的子图。公共图基准测试的广泛实验表明,软罩机制可以提高性能。它还提供了可解释性,使每个层中掩码的值可视化,使我们能够深入了解模型所学的结构。
translated by 谷歌翻译
从理论上讲,通过引入蛋白质3D结构信息,可以改善化合物蛋白结合亲和力(CPA)中计算模型的准确性。但是,由于缺乏有效编码信息蛋白质特征的有效方法,这些模型中的大多数仍然存在低精度。主要的挑战是如何结合多模式信息,例如蛋白质的残基序列,残基原子坐标和扭转角。为了解决这个问题,我们开发了快速的进化关注和彻底的图形神经网络(featnn),以促进蛋白质3D结构信息的应用以预测CPA。具体而言,我们建立了一种新型的端到端结构,以共同嵌入扭转矩阵,离散距离矩阵以及蛋白质和提取具有深图卷积层的复合特征的序列信息。此外,引入了一种新的成对映射注意机制,以全面了解蛋白质和化合物之间的潜在相互作用信息。在CPA预测中,R2系数升高约21.33%,在CPA预测中的各种最新基准都大大优于各种最新基线。因此,壮举为高度准确的CPA预测提供了出色的方法,并促进了候选药物的高通量虚拟筛查。
translated by 谷歌翻译
知识图嵌入(KGE)的有效性在很大程度上取决于建模固有关系模式和映射属性的能力。但是,现有方法只能以不足的建模能力捕获其中的一些。在这项工作中,我们提出了一个名为House的更强大的KGE框架,该框架涉及基于两种家庭转换的新型参数化:(1)住户旋转以实现建模关系模式的较高能力;(2)处理复杂关系映射属性的住户预测。从理论上讲,房屋能够同时建模关键的关系模式和映射属性。此外,房屋是对现有基于旋转的模型的概括,同时将旋转扩展到高维空间。从经验上讲,House在五个基准数据集上实现了新的最新性能。我们的代码可在https://github.com/anrep/house上找到。
translated by 谷歌翻译
Feynman路径积分通过概括所有可能的路径的巨大多种流形,为量子传播器和量子动力学提供了优雅的,经典的启发代表。从计算和模拟的角度来看,整个路径歧管的崇高跟踪是一个困难的问题。机器学习可以有效地帮助您确定相关的子空间和位于巨大路径歧管一小部分的内在结构。在这项工作中,我们提出了用于量子机械系统的Feynman路径发生器,该系统从(低维)潜在空间以及通过靶向欧几里得时空的所需路径密度来有效地生成具有固定端点的Feynman路径。对于此类路径发生器,可以有效地估计欧几里得传播器以及地面波函数对于通用势能。我们的工作提供了一种用于计算量子传播器和地面波函数的替代方法,它为量子机械Feynman路径的生成建模铺平了道路,并提供了不同的观点,可以通过深度学习来了解量子古典的对应关系。
translated by 谷歌翻译